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ABSTRACT 

We show that through careful and model-specific optimizations of 

their GPU implementations, simulations of realistic, detailed 

cardiac-cell models now can be performed in 2D and 3D in times 

that are close to real time using a desktop computer. Previously, 

large-scale simulations of detailed mathematical models of 

cardiac cells were possible only using supercomputers. In our 

study, we consider five different models of cardiac 

electrophysiology that span a broad range of computational 

complexity: the two-variable Karma model, the four-variable 

Bueno-Orovio-Cherry-Fenton model, the eight-variable Beeler-

Reuter model, the 19-variable Ten Tusscher-Panfilov model, and 

the 67-variable Iyer-Mazhari-Winslow model. For each of these 

models, we treat both their single- and double-precision versions 

and demonstrate linear or even sub-linear growth in simulation 

times with an increase in the size of the grid used to model cardiac 

tissue. We also show that our GPU implementations of these 

models can increase simulation speeds to near real-time for 

simulations of complex spatial patterns indicative of cardiac 

arrhythmic disorders, including spiral waves and spiral wave 

breakup. The achievement of real-time applications without the 

need for supercomputers may, in the near term, facilitate the 

adoption of modeling-based clinical diagnostics and treatment 

planning, including patient-specific electrophysiological studies. 
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1. INTRODUCTION 
Cardiac arrhythmia, such as atrial fibrillation (AF) and ventricular 

fibrillation (VF), is a disruption of the normal excitation process 

in cardiac tissue due to faulty processes at the ion-channel and 

cellular level, at the level of cell-to-cell communication, or at the 

full organ level. The clinical manifestation is a rhythm with 

altered frequency (tachycardia or bradycardia, see Fig. 1(b)) or the 

appearance of multiple frequencies driven by spiral waves of 

electrical activity (polymorphic tachycardia), with subsequent 

deterioration to a chaotic signal known as fibrillation (see Fig. 

1(c)) [4, 16, 17, 49]. 

 

(a)                   (b)           (c) 

Figure 1. Four views of the transition from (a) normal heart 

rhythm to (b) ventricular tachycardia and (c) ventricular 

fibrillation. Top to bottom: electrocardiogram, 2D simulation, 

imaging-based in vitro experiment, and 3D simulation. 

An important characteristic of cardiac cells is the membrane 

potential: the difference in voltage between the interior and 

exterior of a cell. The membrane potential is non-zero because of 

differences in the concentrations of various ions in the 

intracellular and extracellular environments along with time-

dependent changes in response to the net actions of ion channels 

and ion pumps (such as the sodium-potassium ATPase) embedded 

in the membrane, which transport ions across the membrane [10]. 

Cardiac tissue is typically modeled mathematically as a reaction-

diffusion system involving partial differential equations (PDEs) 

for diffusing species (typically only the transmembrane potential) 

and a system of nonlinear differential equations for the other state 

variables, which describe the flux of ions across the cell 

membrane along with corresponding changes in ion 

concentrations. Detailed models of cardiac cells can include more 

than 80 state variables and hundreds of fitted parameters [10].  
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Because of the computational demands such models place on 

normal CPU-based and multi-core-based workstations, most 

studies of the electrical activity of the heart, including real-time 

interactive Java programs [11], traditionally have focused on 

using either complex cell models in single-cell formations or 

simplified cell models in more realistic 3D heart structures. A few 

studies have used supercomputers to integrate models of 

intermediate complexity with 3D structures [21, 34, 47]. 

Real-time simulation refers to the ability to execute a computer 

model of a physical system at the same rate as the actual physical 

system. Recently, the advantages of GPU over CPU processing 

have been established for many areas of science, including 

systems biology. Using the CUDA (Compute Unified Device 

Architecture) parallel programming model from NVIDIA, the 

highly parallel and multi-core capabilities of GPUs can be 

exploited to achieve extremely fast simulations of complex 

models in 2D and 3D. If such large-scale realistic models can be 

simulated in near real-time, many more applications, including 

patient-specific treatment strategies for cardiac-rhythm disorders, 

become feasible without the need for supercomputers. To date, 

such efforts have come up short. 

In this paper, we show that it is possible to perform simulations of 

models of cardiac cells ranging in complexity from 2 to 67 

variables in near real time for realistic problem sizes through 

careful GPU implementations. To maximize performance gains, 

model-specific optimization techniques, including partitioning of 

the model equations among multiple CUDA kernels as 

appropriate and judicious use of the different types of memory 

available to GPUs, are incorporated.  

 

The particular models we consider are the 2-variable Karma 

model, the 4-variable Bueno-Orovio-Cherry-Fenton (BCF) model 

[3], the 8-variable Beeler-Reuter (BR) model [1], the 19-variable 

Ten Tusscher-Panfilov (TP) model [46], and the 67-variable Iyer-

Mazhari-Winslow (IMW) model [22]. For each of these models, 

we implement both single- and double-precision versions and 

demonstrate linear or even sub-linear growth in simulation times 

with an increase in the size of the two dimensional grid used to 

model cardiac tissue. We also show that our GPU 

implementations of these models can increase simulation speeds 

to near real-time for simulations of complex spatial patterns 

indicative of cardiac arrhythmic disorders, including spiral waves 

and spiral wave breakup. 

 

Furthermore, although some of the simpler models have been 

previously studied in detail in tissue, this is not the case for many 

complex models. The IMW model, for example, has only been 

simulated in tissue by us in a previous manuscript [3] and using 

supercomputers. The present manuscript shows, for the first time, 

that it is possible to simulate a model of that complexity on a 

desktop computer. Other models of similar complexity that have 

never been modeled in 2D or 3D (for example, Grandi et al. [13], 

O’Hara et al. [33]) now can be studied without the need for 

supercomputers. We therefore believe that by using this approach, 

anyone with a desktop computer will be able to study a wide 

range of dynamics for the vast majority of models of cardiac 

electrophysiology, regardless of the model’s complexity. 

 

2. CUDA PROGRAMMING MODEL 
CUDA is a general-purpose parallel-computing architecture and 

programming model that leverages the parallel compute engine in 

NVIDIA GPUs. Optimal programming of GPUs requires a 

thorough understanding of the CUDA architecture and the 

underlying GPU hardware, including the concepts of threads, 

processors, and kernels, as well as the different levels of memory 

available. As illustrated in Fig. 2, the GPU architecture is built 

around a scalable array of multithreaded Streaming 

Multiprocessors (SMs), made up of 8 or 32 Scalar Processor (SP) 

cores. SP cores contain a fused add-multiply unit capable of both 

single- and double-precision arithmetic and share a common local 

memory. 

The CUDA parallel computing model uses tens of thousands of 

lightweight threads assembled into one- to three-dimensional 

thread blocks. A thread executes a function called the kernel that 

contains the computations to be run in parallel; each thread uses 

different parameters. Threads located in the same thread block can 

work together in several ways. They can insert a synchronization 

point into the kernel, which requires all threads in the block to 

reach that point before execution can continue. They also can 

share data during execution. In contrast, threads located in 

different thread blocks cannot communicate in such ways and 

essentially operate independently. Although a small number of 

threads or blocks can be used to execute a kernel, this 

arrangement would not fully exploit the computing potential of 

the GPU. To utilize the GPU most effectively, the underlying 

problem should be divided into a 2D or 3D grid of independent 

blocks, each of which can be further subdivided into cooperating 

threads; see Fig. 3. Problems that cannot be implemented in this 

manner will benefit significantly less from a GPU-based 

implementation. 

Figure 2. GPU architecture. 

Different types of memory are available for use in CUDA, and 

their judicious use is key to performance. The most general is 

global memory, to which all threads have read/write access. The 

generality of global memory makes its performance less 

optimized overall, so it is important that access to it be coalesced 

into a single memory transaction of 32, 64, or 128 bytes [32]. 

Constant memory is a cached, read-only memory intended for 

storing constant values that are not updated during execution. All 



instances of a kernel may access these values regardless of 

location. Texture memory is another cached, read-only memory 

that is designed to improve access to data with spatial locality in 

up to three dimensions. For example, texture memory is a natural 

choice for storing an array that also will require retrieval of 

neighboring values whenever a single entry is retrieved. Linear 

interpolation is provided with texture memory. Finally, local 

memory is invoked when a thread runs out of available registers. 

CUDA library functions in the host code running on the CPU 

administer such tasks as kernel execution and memory 

management.  

Additional, significantly faster levels of memory are available 

within an SM, including 16KB or 32KB of registers partioned 

among all threads. As such, using a large number of registers 

within a CUDA kernel will limit the number of threads that can 

run concurrently. In addition, each SM has a shared memory 

region (16KB). This level of memory, which can be accessed 

nearly as quickly as the registers, facilitates communication 

between threads and also can be used as a memory cache that can 

be controlled by the individual programmer [25]. Shared memory 

is divided into 16 banks; for optimal performance, threads 

executed concurrently should access different banks to prevent 

bank conflicts [32]. 

The computing resources of CUDA-capable video cards are 

characterized by their compute capability. Devices with compute 

capability 1.0 and 1.1 make up the first generation of CUDA 

devices, based on the G80 GPU, whereas those with compute 

capability 1.2 and 1.3 are based on the more advanced GT200 

GPU. Only cards with compute capability greater than or equal to 

1.3 allow double-precision floating-point operations. Recently 

NVIDIA introduced a new family of cards called the Fermi-based 

GF100 GPU with compute capability 2.0 that supports object-

oriented programming. 

 

Figure 3. A 2D grid of blocks. The computation of each array 

element is assigned to a thread. Threads within the same block 

can communicate through shared memory. Threads in 

different blocks must communicate through global memory. 

Our GPU testbed is an NVIDIA Tesla C2070 processor 

containing 448 scalar cores organized as 14 SMs with 6GB of 

DRAM. The processor core clock is 1.15 GHz and the maximum 

memory-access bandwidth is 144 GB/sec. The C2070 can perform 

1030 Gigaflops using single-precision arithmetic or 515 Gigaflops 

using double-precision arithmetic. To compare our results with 

other papers, we also have used a GPU Tesla C1060 with 240 SP 

cores divided equally among 30 SMs, and 4GB of DRAM. The 

SP core clock is 1.29 GHz and the maximum bandwidth of 

memory access is 102 GB/sec. The C1060 is able to perform 933 

Gigaflops using single-precision arithmetic or 78 Gigaflops using 

double-precision arithmetic. 

3. CARDIAC MODELS 
We focus on implementing models of cardiac electrophysiology. 

At the tissue level, a multicellular preparation usually is 

approximated using a continuum model, rather than by 

incorporating discrete cells. The primary variable of interest is the 

voltage across the cell membrane, called the voltage or membrane 

potential V, along with one or more other variables. In this way, 

cardiac electrical dynamics can be described using a reaction-

diffusion equation of the following form: 
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where the first term on the right side represents the diffusion 

component with diffusion tensor D and the second term on the 

right represents the reaction component with total current across 

the cell membrane Iion and constant cell membrane capacitatnce 

Cm,The diffusion tensor D describes how cells are coupled 

together and is an important determinant of the velocity with 

which waves propagate in tissue, typically around 70-90 cm/s in 

human ventricular tissue [30, 45]. In addition, D may contain 

information about tissue architecture that affects wave 

propagation, including the x-, y-, and z-components of the local 

muscle fiber orientation. The orientation of fibers is important 

because diffusion, and hence electrical wave propagation, is 

fastest in this direction, a property called anisotropy.  

The exact form of the reaction term varies depending on the level 

of detail and complexity of the electrophysiology model. 

However, it is always nonlinear and is coupled to one or more 

ordinary differential equations of the following form:  

),,( tV
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for additional variables y and nonlinear function F and for 

V = V(t,y). Most models of cardiac cell electrophysiology have 

their origins in the Hodgkin-Huxley model [20] of a neuron along 

with the Noble model [31], which was the first to apply the same 

modeling principles to cardiac cells. This type of model describes 

the reaction term Iion as the sum of currents of different ion species 

(for cardiac cells, primarily Na+, K+, and Ca2+) crossing the cell 

membrane through ion channels. These currents operate in a 

specific fashion to generate a cellular action potential, an 

excursion from a negative resting membrane potential (around 

-85 mV) to a positive potential (around 20 mV in tissue) and back 

to the resting membrane potential. The initial increase in potential 

occurs quickly (on the order of a few ms) via a large inward 

current carried by Na+ ions. Over the rest of the action potential, 

which lasts hundreds of ms in large mammals, the membrane 

potential is determined primarily by a balance between inward 

Ca2+ currents and outward K+ currents. The range of voltages and 

times over which each ion current is active is determined by one 

or more factors, including the membrane potential, time-



dependent gating variables that modulate the permeability of ion 

channels, and the concentrations of ions inside and outside the 

cells. Gating variables, ion concentrations, and other terms often 

are state variables (the vector y in the above equation) of a model 

and evolve according to their own differential equations, possibly 

according to different time scales. 

The precise details of the electrophysiology models can be 

represented at different levels. Biophysically detailed models take 

into account a large number of currents and the vector of state 

variables y may have anywhere from a few to dozens of 

components in addition to the membrane potential. One of the 

earliest models of cardiac cells is the Beeler-Reuter (BR) model 

[1], which represents the electrophysiology of ventricular cells 

(located in the lower chambers of the heart). This model includes 

a total of eight state variables and has been widely used for 

several decades; we include it as one of the models we implement 

in CUDA. More recent models make use of subsequent 

biophysical discoveries to represent cardiac cell electrophysiology 

in more detail. We implement two such models, both of human 

ventricular electrophysiology: the 19-variable Ten Tusscher-

Panfilov model (TP) [46] and the 67-variable Iyer-Mazhari-

Winslow (IMW) model [22].  

Although these models may seem overly complex and overfitted, 

they are developed to reproduce in detail the dynamics of each 

specific ion channel that is important in determining overall 

cardiac cell electrophysiology in normal and pathological 

conditions. Such information is crucial for understanding how 

interventions at the ion channel level can affect cell behavior; 

however, at the tissue level, the wealth of biophysical detail in 

complex electrophysiology models can obscure the physical 

phenomena underlying their behavior. Furthermore, as discussed 

in Ref. [3], the large number of parameters in these models tends 

to increase the likelihood of converging to a local minimum rather 

than the global minimum during the parameter fitting process. For 

this reason, less complicated models also have been developed 

that can represent the behavior of cardiac cells and tissue in a way 

that facilitates analysis of their dynamics and of the role of 

different parameters in determining their behavior. This class of 

models gives up biophysical detail at the ion channel level in 

exchange for greater computational tractability One such model is 

the Karma model [23], which is a simplification of the Noble 

model. Another such model is the Bueno-Orovio-Cherry-Fenton 

(BCF) model [3] (also called the minimal model [5, 9]). This 

model uses four variables and three ion currents that represent 

summary Na+, K+, and Ca2+ currents and incorporates the minimal 

level of complexity necessary to reproduce accurate action 

potential shapes and rate-dependent properties. We also 

implement both of these models in CUDA. 

In total, we implement 5 different models containing from 2 to 67 

variables. By considering models that vary over a broad range of 

biophysical detail and computational complexity, we are able to 

identify and address a number of performance issues that arise in 

the CUDA programming of cardiac models.  

 

4. REACTION TERM 
The reaction term in cardiac models consists of anywhere from 

one to dozens of additional differential equations that provide 

simple or detailed descriptions of the electrophysiology of cardiac 

cells. Appropriate implementation of the reaction term is vital to 

optimizing the performance of cardiac electrophysiology 

simulations on GPUs. 

Performance is increased significantly by tabulating nonlinear 

functions of one variable in lookup tables that are accessed 

through the texture memory. This provides two main advantages: 

it reduces the latency of global memory access, and the hardware 

provides a built-in linear interpolation capability. To remove 

singularities that occur in some functions for values that make the 

denominator of a fraction zero, we calculate the limit of the 

functions at the relevant values using l'Hopital's rule.  

We also improve performance in several other ways. Because 

division is more computationally expensive than multiplication, 

all divisions that do not involve variables are replaced with 

equivalent multiplications. Also, some differential equations are 

solved using semi-implicit methods that allow the use of larger 

integration time steps.  

In a number of cases, the reaction term in cardiac models uses 

biological switching functions in the form of a Heaviside function, 

which is a discontinuous function whose value is zero for negative 

arguments and one for positive arguments. Heaviside functions 

are usually implemented using an if statement, which is penalized 

by the GPU because it leads to thread divergence during parallel 

execution. Thread divergence refers to threads taking different 

paths of a conditional branch. Such threads must run serially, 

which can cause serious performance degradations. In our 

simulations, we have used an alternative implementation of the 

Heaviside function in which the if statement is replaced by 

multiplication with a predicate; see Fig. 4. 

 
Figure 4. Heaviside function implementation by if-statement 

(left) and by multiplication with a predicate (right). 

A central concern in the implementation of the reaction term is the 

number of registers used per thread. The total number of threads 

per block and the number of registers per thread should be chosen 

to best utilize the available computing resources. The relation 

among these quantities, as given by the CUDA Programming 

Guide [32], is 

)32,(TceilB

R


 

where R is the total number of registers per multiprocessor (a 

device-specific quantity), B is the number of active blocks per 

multiprocessor, T is the number of threads per block, and 

ceil(T,32) is T rounded up to the closest multiple of 32. Having 

multiple active blocks for each multiprocessor ensures that the 

multiprocessor will not be idle during thread synchronization or 

device memory access. By overlapping execution of blocks that 

wait and blocks that can run, the multiprocessor is able to hide the 

communication latency better. 

In simple cardiac models with only a small number of variables 

(two or four), it is possible and in fact is advisable to implement 

the solution of the reaction term as a single kernel. In this case, 

the number of registers used per thread is usually less than 32, so 

that 2 or more active thread blocks of 256 threads can be executed 

by the same multiprocessor (with a device equipped with 16KB of 

Heaviside(x, th, a, b){ 

      if (x>th) 

           return a; 

      else 

           return b; 

} 

c = b-a; 

… 

Heaviside(x, th, a, c){ 

    return a + (x>th)*c; 

} 



registers for each multiprocessor). In more complex cardiac 

models having more than four variables, use of a single kernel to 

solve the reaction term is not recommended and often is not 

possible because the number of registers available per thread is 

insufficient. In this case, the solution of the reaction term is 

implemented as a sequence of multiple kernel invocations, with 

each kernel devoted to solving a group of related variables. 

Because a kernel invocation may modify the input of the 

following kernel, it is necessary to resolve these dependencies by 

buffering the variables that are common input among the kernels. 

Every kernel invocation introduces an overhead. To optimize the 

performance of our implementation with multiple kernels, we 

used the visual profiler provided by the recent CUDA SDK to find 

the best trade-off between kernel splitting, resource utilization, 

and the kernel invocation overhead. 

5. DIFFUSION TERM 
Cardiac models also include a diffusion term that spatially couples 

the main variable (membrane potential). Solving the diffusion 

term essentially consists of calculating the Laplacian operator for 

all of the grid points. This operation requires frequent access to 

values of neighboring cells. The use of the global memory is not 

desirable for this operation, because the specific memory-access 

pattern that the threads should follow in order to read from the 

neighbor cells is not coalesced [32], which reduces performance 

considerably. To solve this problem more efficiently, we consider 

two solutions, one using shared memory and the other using 

texture memory [28, 37]. 

In the shared-memory approach, the grid points can be subdivided 

easily into smaller overlapping parts (see Fig. 5), which then can 

be assigned to the threads' blocks. The values at neighboring 

elements are then read using shared memory within a block. This 

operation is performed by all the threads of the block, which 

control both the yellow and the red elements shown in Fig. 5. 

After synchronizing among the threads belonging to the same 

block, the threads controlling the red cells read the neighborhood 

collected in the shared memory and write in their cell the updated 

value of the Laplacian. This solution can be used with both single- 

and double-precision implementations, but the drawback is that it 

needs to use more threads than the number of matrix elements. 

 

Figure 5. Calculating the diffusion term using shared memory. 

An alternative approach that we have considered is to use the 

texture memory, which provides a cache that is optimized for 1D, 

2D or 3D spatial locality, so that threads that read texture 

addresses that are close together will achieve the best 

performance. Currently, it is not possible to bind the texture to 

double-precision data, so the use of the texture memory for 

implementing the diffusion term is restricted only to single-

precision implementations. 

6. SIMULATION RESULTS 
In this section, we present 2D simulations of the five models of 

interest and analyze their performance. Four square grids of 

increasing size are used to assess how the performance scales with 

the number of nodes. Although the larger grid sizes are 

physiologically unrealistic for 2D human cardiac surfaces, the 

numbers of nodes they contain are similar to what would be 

required for some 3D implementations. Note that because of the 

necessity of representing information from neighboring thread 

blocks in shared-memory implementations, our 16 x 16 thread 

blocks are effectively 14 x 14 for the shared-memory 

implementations. Therefore, the grid sizes in the shared-memory 

implementations (512, 1024, 1536, and 2048) are slightly 

different than those in the texture-memory implementations (520, 

1038, 1556, and 2074) in all cases. 

6.1 Karma Model (2 Variables) 
The Karma model is a simplified model of cardiac 

electrophysiology that reproduces some basic features of cardiac 

dynamics, including wavelength oscillations, which can be seen in 

Fig. 6. To quantify GPU performance, we initiated a spiral wave 

[14] using the Karma model in square grids with each side 

consisting of 512, 1024, 1536, or 2048 elements (corresponding to 

218, 220, 1.125x221, and 222 grid points, respectively), as shown in 

Fig. 6. Note that the wavelength of a spiral wave in this model is 

smaller than that of the human ventricular models (compare Figs. 

9 and 12). We used three different implementations: double 

precision, single precision using shared memory to calculate the 

diffusion term, and single precision with the texture memory used 

for the diffusion term. The double-precision simulation required 

just over twice as much time as the corresponding single-precision 

simulation. For the single-precision simulations, use of the texture 

memory for the diffusion term improved performance. For the 

smallest grid size, which was similar in size to the surface area 

(epicardium) of a human ventricle, the simulation times were 

almost real time for the shared memory implementations, and the 

simulation was faster than real-time for single precision using the 

texture memory. 

 

Figure 6. Left: Spiral wave using the Karma model in a 

512 x 512 tissue (12.8 cm x 12.8 cm; resolution 0.0262 cm). 

Right: Simulation time normalized to real time for computing 

1 s using different grid sizes.  

6.2 BCF Model (4 Variables) 
The BCF model is a minimal model of cardiac electrophysiology 

that reproduces many properties of cardiac tissue and can be 

parameterized [3, 5] in many cases to reproduce the dynamics of 

more complex models as well as experimental data. As with the 

Karma model, we initiated a spiral wave using the BCF model for 



square grids with each side consisting of 512, 1024, 1536, or 2048 

elements and used the same three implementations: double 

precision, single precision with shared memory, and single 

precision with texture memory, as shown in Fig. 7. For the BCF 

model, the double precision simulation required almost three 

times as much time as the corresponding single-precision 

simulation. For the single-precision simulations, use of the texture 

memory for the diffusion term improved performance, but not by 

as large a factor as for the Karma model. For the smallest grid 

size, the simulation times were between a factor of 2 and 5 times 

greater than real time for all three implementations. 

Figure 7. Left: Spiral wave using the BCF model in a 

512 x 512 tissue (12.8 cm x 12.8 cm; resolution 0.025 cm). 

Right: Simulation time normalized to real time for computing 

1 s using different grid sizes. 

6.3 BR Model (8 Variables) 
The BR model is an 8-variable model of cardiac 

electrophysiology that was the first detailed model of mammalian 

ventricular cell electrophysiology. As with the Karma and BCF 

models, a spiral wave was initiated using the BR model for square 

grids with each side consisting of 512, 1024, 1536, or 2048 

elements and the performance of the same three implementations 

(double precision, single precision with shared memory, and 

single precision with texture memory) was quantified, as shown in 

Fig. 8. For the BR model, the double-precision simulation was 

about two times slower than the corresponding single-precision 

simulation. As with the Karma model, use of the texture memory 

for calculation of the diffusion term improved performance 

significantly for the single precision case. For the smallest grid 

size, the simulation times for the three implementations were 

between a factor of 10 and 25 times longer than real time. 

 

Figure 8. Left: Spiral wave using the BR model in a 512 x 512 

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right: 

Simulation time normalized to real time for computing 1 s 

using different grid sizes.  

6.4 TP Model (19 Variables) 
The TP model is a 19-variable model that describes the 

electrophysiology of human ventricular cells. As with the 

previous models, a spiral wave was initiated using the TP model 

for square grids with each side consisting of 512, 1024, 1536, or 

2048 elements and the performance of the same three 

implementations was quantified, as shown in Fig. 9. For the TP 

model, the double-precision simulation was about two to three 

times slower than the corresponding single-precision simulation. 

Use of the texture memory for calculation of the diffusion term 

resulted in a substantial performance improvement: for the largest 

grid size, the texture-memory simulation required only half as 

much time as the corresponding shared-memory simulation. At 

the smallest grid size, the simulation times for the three 

implementations were between a factor of 35 and 70 times longer 

than real time. 

 

Figure 9. Left: Spiral wave using the TP model in a 512 x 512 

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right: 

Simulation time normalized to real time for computing 1 s 

using different grid sizes.  

For the models discussed so far, no significant differences were 

observed between the single- and double-precision simulations. 

We know, however, that for some more biophysically detailed 

models, including the TP model, single precision is not sufficient 

to represent small but important changes in the intracellular K+ 

and intracellular Na+ concentrations over the course of each action 

potential. Thus, in the single-precision simulations of the TP 

model, very small changes in concentration were represented as 

zeros, which produced non-smooth time traces of these 

concentrations within a single action potential. Although the 

concentration differences between single and double precision 

over one action potential were slight, the difference accumulated 

over time and changed not only the value of the concentration but 

also the trend of the concentration over time, especially for the K+ 

concentration, as shown in Fig. 10. The differences in 

concentrations affected the time progression of spiral waves 

generated using single and double precision. Fig. 11 shows 

snapshots of spiral waves obtained after 600 s (10 min) of 

simulation time and indicates that the waves are at different points 

in their rotation paths. 

 

Figure 10. Time evolution of the intracellular K+ (left) and Na+ 

(right) concentrations observed at a representative grid point 

for the TP model with single and double precision.  



As Figs. 10 and 11 show, although single precision is faster, it 

may introduce errors. Therefore, it is necessary to determine if the 

tradeoff between speed and accuracy is acceptable when making 

predictions using these models. For some very specific cases, such 

as when simply reproducing activation maps that show how a 

wave propagates through the atria or ventricle, single precision 

may be acceptable. For most other types of studies, such as those 

involving fibrillation, use of double precision probably is 

necessary. 

 

Figure 11. Spiral waves generated with the TP model using 

single precision (left) and double precision (right) after 

10 mins. 

6.5 IMW Model (67 Variables) 
The IMW model is a 67-variable model that describes the 

electrophysiology of human ventricular cells in more detail than 

the TP model. As with the previous models, a spiral wave was 

initiated for square grids with each side consisting of 512, 1024, 

1536, or 2048 elements and the performance of the same three 

implementations was quantified, as shown in Fig. 12. For the 

IMW model, the double-precision simulation was about twice as 

slow as the corresponding single-precision simulation. As with the 

Karma, BR, and TP models, use of the texture memory for 

calculation of the diffusion term improved performance 

significantly. At the smallest grid size, the simulation times for the 

three implementations ranged from 680 to 1300 times longer than 

real time. As with the TP model, double precision is necessary for 

adequate representation of ion concentrations. 

 

Figure 12. Left: Spiral wave using the IMW model in a 

512 x 512 tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). 

Right: Simulation time normalized to real time for computing 

1 s using different grid sizes. 

7. PERFORMANCE 
Fig. 13 shows the performance for the different grid sizes as a 

function of the number of model variables. For the models with 4, 

8, and 19 variables, the simulation time scales linearly with the 

number of variables. For the IMW model (67 variables), the 

departure from linear scaling can be explained by several factors. 

First, it is necessary to split the solutions of the ordinary different 

equations into 21 kernel calls. As a result, for any variable needed 

by more than one kernel, it is necessary to duplicate calculation of 

that variable within each such kernel to avoid communication 

between kernels. This duplication results in increased overhead 

for every integration step computed. In addition, the IMW code 

was not optimized as fully as the codes for the other models were 

(in terms of lookup tables, division eliminations, etc.).  

 

 

Figure 13. Simulation time normalized to real time as a 

function of the number of model variables. 

We expect to obtain better performance for all the models by 

using other integration methods for the diffusion term, such as the 

alternating direction implicit scheme, which allows the use of 

larger integration time steps [8]. 

We also intend to extend our results to 3D and realistic cardiac 

anatomies. We note that we do not expect a significant change in 

performance in 3D. The number of grid points in the largest grid 

sizes analyzed here (more than 4 million nodes) is similar to the 

number of grid points that would be required for some 3D 

implementations. In considering potential clinical applications, we 

note that there are two categories to consider, simulatiosn of atrial 

arrhythmias and simulations of ventricular arrhythmias. Because 

of a lack of effective treatment options for some atrial 

arrhythmias, we expect that real-time simulations would be more 

immediately applicable to atrial arrhythmias. Anatomically, the 

atria are significantly smaller and thinner than the ventricles, so 

that the number of grid points required to implement realistic 

simulations of atrial arrhythmias should be on the order of the 

number of grid points in our largest 2D simulations here. 

Extending the code to 3D is expected to be relatively 

straightforward, with the possible exception of the diffusion term, 

which will incorporate information from a greater number of grid 

points. However, we note that only one variable (the membrane 

potential V) diffuses. In addition, as the number of model 

variables increases, the diffusion term occupies a decreasing 

fraction of the total computational effort. For this reason, although 

more complex models may require more computational resources 

overall, they are less affected by the expense of calculating the 

diffusion term. Thus, we expect that it will be computationally 

feasible to extend our implementations to perform near real-time 

simulations in realistic 3D atrial anatomies involving simpler 



electrophysiology models with more grid points or more complex 

electrophysiology models with fewer grid points. 

8. RELATED WORK 
Much effort has been devoted to accelerating applications of 

computational systems biology [18] and molecular biology [41] 

using large clusters of CPUs or application-specific integrated 

circuits (ASICs). These solutions are usually very expensive and 

may not be readily available to a broad group of users. This paper 

focuses on the use of GPUs as solution that can be implemented 

easily within a workstation. 

Over the last five years, GPU performance has exceeded that of 

CPUs. As this trend continues [28], many branches of science 

requiring large-scale simulation, such as systems biology [7, 44], 

have turned to GPU implementations, and cardiac electrical 

dynamics is no exception [6]. Realistic human heart geometries at 

currently feasible spatial resolutions require that the tissue 

structures are discretized in meshes containing between 224 and 

227 grid points [21, 34]. Each cell, in turn, involves a separate 

implementation of the mathematical equations describing its 

electrophysiology as explained in Section 3; these descriptions 

can be as simple as two [23] or as complicated as 67 [22] or 87 

[13] ordinary differential equations. Even with a simple cell 

model, 0.6 seconds of simulation requires about 2 days using 32 

CPUs [34]; for a more complex model, the same simulation time 

uses about 10 hours with 6144 CPUs [21].  

GPUs have been shown to be superior to CPUs for reaction-

diffusion equations similar to those used to describe cardiac 

dynamics in both 2 and 3 dimensions, with typical acceleration 

values between 5 and 40 depending on the algorithms used [28, 

38] and to study turbulent dynamics generated by spiral wave 

dynamics [2, 53]. In addition, GPUs have been used for 

intracellular calcium dynamics within a single cell using Monte 

Carlo simulations, with a 15,000-fold reduction in time compared 

to previous studies [19]. GPUs have also been used to accelerate 

heart manipulations to enhance intervention simulations such as 

catheter positioning [51], surgical deformation [29], simple 

contractions [50, 52], and ECG generation [42, 43]. 

Although most simulations of cardiac electrical dynamics at the 

level described in this paper currently use CPUs, the use of GPUs 

is becoming increasingly common. The first simulation of cardiac 

arrhythmias using GPUs actually was performed on an Xbox 360 

[40] using the BCF model [3] (Fig. 7). The first GPU-based 

simulation study of cardiac dynamics in 3D [39] involved the 

eight-variable Luo-Rudy I (LRI) model [26] and a realistic rabbit 

ventricular structure, with 1 s of simulation taking 72 minutes on a 

single GPU, compared to 45 minutes using a cluster of 32 CPUs. 

Since then, other studies have compared the speeds between CPUs 

and GPUs for different cardiac cell models. The 27-variable 

Mahajan et al. model [27] was reported to run 9 to 17 times faster 

(depending on tissue size) using 4 GPUs than 4 CPUs [48]. 

More recently, Rocha et al. [36] reported a gain of up to 20 times 

for a single GPU implementation compared to a parallel CPU 

implementation running with 4 threads on a quad–core machine, 

with parts of the code accelerated by a factor of 180 for the 8-

variable LRI model [26] and the 19-variable TP model [46]. 

Lionetti et al. [24, 25] showed how different optimizations are 

needed for different cell models (two-variable FitzHugh-Nagumo 

[12], eight-variable BR [1], 18-variable Puglisi-Bers (PB) [35], 

42-variable Grandi et al. [15], and 87-variable Flaim et al. [13]). 

In particular, they obtained a speedup of 6.7 for the 87-variable 

model.  

In the remainder of this section, we relate our findings to prior 

efforts using GPUs to accelerate cardiac electrophysiology 

simulations. Sato et al. report 1 s of simulation in the 8-variable 

LR1 model in an 800x800 domain taking 283 s; in contrast, our 

simulations in the 8-variable-BR model (the two models are 

mathematically almost equivalent and share more than 90% of the 

same equations) take 11.34 s on a 512 x 512 domain and 39.2 s on 

a 1024 x 1024 domain (rescaling our times to the 800 x 800 

domain results in a comparable speedup of a factor of 11). 

Vigmond et al. [48] report that 1 s of simulation time on 5 million 

nodes using the 27-variable Mahajan et al. model takes about 

16 ksec (~4.5 h), whereas our 19-variable TP implementation in a 

2048 x 2048 domain (close to 5 million nodes) takes about 

8.2 min. However, a direct comparison is difficult to make as 

there is not only a difference of eight ODEs, but their simulations 

utilize a computationally more expensive bidomain approximation 

(used during simulations of defibrillation, where a Poisson 

equation needs to be solved at each time step).  

Lionetti et al [24, 25] performed 300 ms of a heart beat simulation 

on a domain that consisted of 42,240 grid points to represent a 

ventricular section. Their main interest was to optimize the ODE 

portion of the reaction-diffusion system, so no spatial integration 

was performed and all the cells were decoupled. Therefore, their 

integration times did not include the spatial integration. They also 

used different optimization techniques for the different cell 

models considered. For the two-variable FHN model, 300 ms of 

simulation required 5.91 s; for the eight-variable BR model, 

22.64 s; for the 18-variable PB model, 49.87 s; and for the 87-

variable Flaim et al. model, 119.29 s. To compare with our 

simulations, in which the smallest domain consisted of 512 x 512 

grid points (a domain about 6.2 times larger), and for 1 s of 

simulation time, we need to multiply their timing results by 20.5. 

Therefore, 1 s of simulation of the two-variable Karma model 

(with the same complexity as the FHN model) took 0.97 s vs. 

121 s, the eight-variable BR model took 11.34 s vs. 464 s, the 19-

variable TP model took 35.4 s vs. the 18-variable PB model 

1022 s, and the 67-variable IMW 681 s vs. the 87-variable Flaim 

et al. model 2445 s. It is important to recall that the simulations by 

Lionetti et al. do not include the spatial integration component, 

making our timing results even more impressive in comparison. 

Rocha et al. report simulations of the eight-variable LR1 and the 

19-variable TP models for 500 ms for different 2D grid sizes (the 

largest of which was 640 x 640) using a higher spatial resolution 

of 0.01 cm. To compare with their results, we performed 500 ms 

simulations using the same domain size and spatial resolution. 

They report a simulation time of 11.4 minutes and 2.8 hours for 

the LR1 and the TP models, whereas we obtain for the BR and TP 

models 23.05 s and 285.56 sec on a C1060 card similar to theirs 

and 13.9 s and 105.4 s on a C2070 (Fermi-based) card. It is 

important to note that the times reported by Rocha et al. include 

outputting data at unspecified intervals; for comparison, our times 

include outputting a byte representation of the voltage at all nodes 

every 1 ms. 

9. CONCLUSIONS 
In summary, we have shown that we can achieve near real-time 

performance of simulated cardiac dynamics in tissues of realistic 

sizes by using GPU architectures. To achieve the maximum gains 

in computational efficiency, it is necessary to consider model-

specific aspects of the implementation, including appropriate 

division of the model among multiple kernels and careful use of 

the available levels of memory. The significant performance gains 

should facilitate implementation of novel applications of 



simulation, including possible use in diagnosing cardiac disease or 

developing patient-specific treatment strategies. 
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