
Toward Real-time Simulation of Cardiac Dynamics

E. Bartocci1,2, E.M. Cherry3, J. Glimm2
, R. Grosu1

, S.A. Smolka1
, and F.H. Fenton4

1
Department of Computer Science, Stony Brook University, Stony Brook, NY.

2
Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY.

3
School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY.

4
Department of Biomedical Sciences, Cornell University, Ithaca, NY.

ABSTRACT

We show that through careful and model-specific optimizations of

their GPU implementations, simulations of realistic, detailed

cardiac-cell models now can be performed in 2D and 3D in times

that are close to real time using a desktop computer. Previously,

large-scale simulations of detailed mathematical models of

cardiac cells were possible only using supercomputers. In our

study, we consider five different models of cardiac

electrophysiology that span a broad range of computational

complexity: the two-variable Karma model, the four-variable

Bueno-Orovio-Cherry-Fenton model, the eight-variable Beeler-

Reuter model, the 19-variable Ten Tusscher-Panfilov model, and

the 67-variable Iyer-Mazhari-Winslow model. For each of these

models, we treat both their single- and double-precision versions

and demonstrate linear or even sub-linear growth in simulation

times with an increase in the size of the grid used to model cardiac

tissue. We also show that our GPU implementations of these

models can increase simulation speeds to near real-time for

simulations of complex spatial patterns indicative of cardiac

arrhythmic disorders, including spiral waves and spiral wave

breakup. The achievement of real-time applications without the

need for supercomputers may, in the near term, facilitate the

adoption of modeling-based clinical diagnostics and treatment

planning, including patient-specific electrophysiological studies.

Categories and Subject Descriptors

D [Software]; F [Theory of Computation]; G [Mathematics

and Computing]; H [Information Systems]; I.6 [Simulation

and Modeling]: Applications; J.3 [Computer Applications]: Life

and Medical Sciences

General Terms

Performance; Theory

Keywords

GPU computing, High-performance computational systems

biology, cardiac models.

1. INTRODUCTION
Cardiac arrhythmia, such as atrial fibrillation (AF) and ventricular

fibrillation (VF), is a disruption of the normal excitation process

in cardiac tissue due to faulty processes at the ion-channel and

cellular level, at the level of cell-to-cell communication, or at the

full organ level. The clinical manifestation is a rhythm with

altered frequency (tachycardia or bradycardia, see Fig. 1(b)) or the

appearance of multiple frequencies driven by spiral waves of

electrical activity (polymorphic tachycardia), with subsequent

deterioration to a chaotic signal known as fibrillation (see Fig.

1(c)) [4, 16, 17, 49].

(a) (b) (c)

Figure 1. Four views of the transition from (a) normal heart

rhythm to (b) ventricular tachycardia and (c) ventricular

fibrillation. Top to bottom: electrocardiogram, 2D simulation,

imaging-based in vitro experiment, and 3D simulation.

An important characteristic of cardiac cells is the membrane

potential: the difference in voltage between the interior and

exterior of a cell. The membrane potential is non-zero because of

differences in the concentrations of various ions in the

intracellular and extracellular environments along with time-

dependent changes in response to the net actions of ion channels

and ion pumps (such as the sodium-potassium ATPase) embedded

in the membrane, which transport ions across the membrane [10].

Cardiac tissue is typically modeled mathematically as a reaction-

diffusion system involving partial differential equations (PDEs)

for diffusing species (typically only the transmembrane potential)

and a system of nonlinear differential equations for the other state

variables, which describe the flux of ions across the cell

membrane along with corresponding changes in ion

concentrations. Detailed models of cardiac cells can include more

than 80 state variables and hundreds of fitted parameters [10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Because of the computational demands such models place on

normal CPU-based and multi-core-based workstations, most

studies of the electrical activity of the heart, including real-time

interactive Java programs [11], traditionally have focused on

using either complex cell models in single-cell formations or

simplified cell models in more realistic 3D heart structures. A few

studies have used supercomputers to integrate models of

intermediate complexity with 3D structures [21, 34, 47].

Real-time simulation refers to the ability to execute a computer

model of a physical system at the same rate as the actual physical

system. Recently, the advantages of GPU over CPU processing

have been established for many areas of science, including

systems biology. Using the CUDA (Compute Unified Device

Architecture) parallel programming model from NVIDIA, the

highly parallel and multi-core capabilities of GPUs can be

exploited to achieve extremely fast simulations of complex

models in 2D and 3D. If such large-scale realistic models can be

simulated in near real-time, many more applications, including

patient-specific treatment strategies for cardiac-rhythm disorders,

become feasible without the need for supercomputers. To date,

such efforts have come up short.

In this paper, we show that it is possible to perform simulations of

models of cardiac cells ranging in complexity from 2 to 67

variables in near real time for realistic problem sizes through

careful GPU implementations. To maximize performance gains,

model-specific optimization techniques, including partitioning of

the model equations among multiple CUDA kernels as

appropriate and judicious use of the different types of memory

available to GPUs, are incorporated.

The particular models we consider are the 2-variable Karma

model, the 4-variable Bueno-Orovio-Cherry-Fenton (BCF) model

[3], the 8-variable Beeler-Reuter (BR) model [1], the 19-variable

Ten Tusscher-Panfilov (TP) model [46], and the 67-variable Iyer-

Mazhari-Winslow (IMW) model [22]. For each of these models,

we implement both single- and double-precision versions and

demonstrate linear or even sub-linear growth in simulation times

with an increase in the size of the two dimensional grid used to

model cardiac tissue. We also show that our GPU

implementations of these models can increase simulation speeds

to near real-time for simulations of complex spatial patterns

indicative of cardiac arrhythmic disorders, including spiral waves

and spiral wave breakup.

Furthermore, although some of the simpler models have been

previously studied in detail in tissue, this is not the case for many

complex models. The IMW model, for example, has only been

simulated in tissue by us in a previous manuscript [3] and using

supercomputers. The present manuscript shows, for the first time,

that it is possible to simulate a model of that complexity on a

desktop computer. Other models of similar complexity that have

never been modeled in 2D or 3D (for example, Grandi et al. [13],

O’Hara et al. [33]) now can be studied without the need for

supercomputers. We therefore believe that by using this approach,

anyone with a desktop computer will be able to study a wide

range of dynamics for the vast majority of models of cardiac

electrophysiology, regardless of the model’s complexity.

2. CUDA PROGRAMMING MODEL
CUDA is a general-purpose parallel-computing architecture and

programming model that leverages the parallel compute engine in

NVIDIA GPUs. Optimal programming of GPUs requires a

thorough understanding of the CUDA architecture and the

underlying GPU hardware, including the concepts of threads,

processors, and kernels, as well as the different levels of memory

available. As illustrated in Fig. 2, the GPU architecture is built

around a scalable array of multithreaded Streaming

Multiprocessors (SMs), made up of 8 or 32 Scalar Processor (SP)

cores. SP cores contain a fused add-multiply unit capable of both

single- and double-precision arithmetic and share a common local

memory.

The CUDA parallel computing model uses tens of thousands of

lightweight threads assembled into one- to three-dimensional

thread blocks. A thread executes a function called the kernel that

contains the computations to be run in parallel; each thread uses

different parameters. Threads located in the same thread block can

work together in several ways. They can insert a synchronization

point into the kernel, which requires all threads in the block to

reach that point before execution can continue. They also can

share data during execution. In contrast, threads located in

different thread blocks cannot communicate in such ways and

essentially operate independently. Although a small number of

threads or blocks can be used to execute a kernel, this

arrangement would not fully exploit the computing potential of

the GPU. To utilize the GPU most effectively, the underlying

problem should be divided into a 2D or 3D grid of independent

blocks, each of which can be further subdivided into cooperating

threads; see Fig. 3. Problems that cannot be implemented in this

manner will benefit significantly less from a GPU-based

implementation.

Figure 2. GPU architecture.

Different types of memory are available for use in CUDA, and

their judicious use is key to performance. The most general is

global memory, to which all threads have read/write access. The

generality of global memory makes its performance less

optimized overall, so it is important that access to it be coalesced

into a single memory transaction of 32, 64, or 128 bytes [32].

Constant memory is a cached, read-only memory intended for

storing constant values that are not updated during execution. All

instances of a kernel may access these values regardless of

location. Texture memory is another cached, read-only memory

that is designed to improve access to data with spatial locality in

up to three dimensions. For example, texture memory is a natural

choice for storing an array that also will require retrieval of

neighboring values whenever a single entry is retrieved. Linear

interpolation is provided with texture memory. Finally, local

memory is invoked when a thread runs out of available registers.

CUDA library functions in the host code running on the CPU

administer such tasks as kernel execution and memory

management.

Additional, significantly faster levels of memory are available

within an SM, including 16KB or 32KB of registers partioned

among all threads. As such, using a large number of registers

within a CUDA kernel will limit the number of threads that can

run concurrently. In addition, each SM has a shared memory

region (16KB). This level of memory, which can be accessed

nearly as quickly as the registers, facilitates communication

between threads and also can be used as a memory cache that can

be controlled by the individual programmer [25]. Shared memory

is divided into 16 banks; for optimal performance, threads

executed concurrently should access different banks to prevent

bank conflicts [32].

The computing resources of CUDA-capable video cards are

characterized by their compute capability. Devices with compute

capability 1.0 and 1.1 make up the first generation of CUDA

devices, based on the G80 GPU, whereas those with compute

capability 1.2 and 1.3 are based on the more advanced GT200

GPU. Only cards with compute capability greater than or equal to

1.3 allow double-precision floating-point operations. Recently

NVIDIA introduced a new family of cards called the Fermi-based

GF100 GPU with compute capability 2.0 that supports object-

oriented programming.

Figure 3. A 2D grid of blocks. The computation of each array

element is assigned to a thread. Threads within the same block

can communicate through shared memory. Threads in

different blocks must communicate through global memory.

Our GPU testbed is an NVIDIA Tesla C2070 processor

containing 448 scalar cores organized as 14 SMs with 6GB of

DRAM. The processor core clock is 1.15 GHz and the maximum

memory-access bandwidth is 144 GB/sec. The C2070 can perform

1030 Gigaflops using single-precision arithmetic or 515 Gigaflops

using double-precision arithmetic. To compare our results with

other papers, we also have used a GPU Tesla C1060 with 240 SP

cores divided equally among 30 SMs, and 4GB of DRAM. The

SP core clock is 1.29 GHz and the maximum bandwidth of

memory access is 102 GB/sec. The C1060 is able to perform 933

Gigaflops using single-precision arithmetic or 78 Gigaflops using

double-precision arithmetic.

3. CARDIAC MODELS
We focus on implementing models of cardiac electrophysiology.

At the tissue level, a multicellular preparation usually is

approximated using a continuum model, rather than by

incorporating discrete cells. The primary variable of interest is the

voltage across the cell membrane, called the voltage or membrane

potential V, along with one or more other variables. In this way,

cardiac electrical dynamics can be described using a reaction-

diffusion equation of the following form:

m

io n

C

I
VD

t

V

,

where the first term on the right side represents the diffusion

component with diffusion tensor D and the second term on the

right represents the reaction component with total current across

the cell membrane Iion and constant cell membrane capacitatnce

Cm,The diffusion tensor D describes how cells are coupled

together and is an important determinant of the velocity with

which waves propagate in tissue, typically around 70-90 cm/s in

human ventricular tissue [30, 45]. In addition, D may contain

information about tissue architecture that affects wave

propagation, including the x-, y-, and z-components of the local

muscle fiber orientation. The orientation of fibers is important

because diffusion, and hence electrical wave propagation, is

fastest in this direction, a property called anisotropy.

The exact form of the reaction term varies depending on the level

of detail and complexity of the electrophysiology model.

However, it is always nonlinear and is coupled to one or more

ordinary differential equations of the following form:

),,(tV
dt

d
yF

y
 ,

for additional variables y and nonlinear function F and for

V = V(t,y). Most models of cardiac cell electrophysiology have

their origins in the Hodgkin-Huxley model [20] of a neuron along

with the Noble model [31], which was the first to apply the same

modeling principles to cardiac cells. This type of model describes

the reaction term Iion as the sum of currents of different ion species

(for cardiac cells, primarily Na+, K+, and Ca2+) crossing the cell

membrane through ion channels. These currents operate in a

specific fashion to generate a cellular action potential, an

excursion from a negative resting membrane potential (around

-85 mV) to a positive potential (around 20 mV in tissue) and back

to the resting membrane potential. The initial increase in potential

occurs quickly (on the order of a few ms) via a large inward

current carried by Na+ ions. Over the rest of the action potential,

which lasts hundreds of ms in large mammals, the membrane

potential is determined primarily by a balance between inward

Ca2+ currents and outward K+ currents. The range of voltages and

times over which each ion current is active is determined by one

or more factors, including the membrane potential, time-

dependent gating variables that modulate the permeability of ion

channels, and the concentrations of ions inside and outside the

cells. Gating variables, ion concentrations, and other terms often

are state variables (the vector y in the above equation) of a model

and evolve according to their own differential equations, possibly

according to different time scales.

The precise details of the electrophysiology models can be

represented at different levels. Biophysically detailed models take

into account a large number of currents and the vector of state

variables y may have anywhere from a few to dozens of

components in addition to the membrane potential. One of the

earliest models of cardiac cells is the Beeler-Reuter (BR) model

[1], which represents the electrophysiology of ventricular cells

(located in the lower chambers of the heart). This model includes

a total of eight state variables and has been widely used for

several decades; we include it as one of the models we implement

in CUDA. More recent models make use of subsequent

biophysical discoveries to represent cardiac cell electrophysiology

in more detail. We implement two such models, both of human

ventricular electrophysiology: the 19-variable Ten Tusscher-

Panfilov model (TP) [46] and the 67-variable Iyer-Mazhari-

Winslow (IMW) model [22].

Although these models may seem overly complex and overfitted,

they are developed to reproduce in detail the dynamics of each

specific ion channel that is important in determining overall

cardiac cell electrophysiology in normal and pathological

conditions. Such information is crucial for understanding how

interventions at the ion channel level can affect cell behavior;

however, at the tissue level, the wealth of biophysical detail in

complex electrophysiology models can obscure the physical

phenomena underlying their behavior. Furthermore, as discussed

in Ref. [3], the large number of parameters in these models tends

to increase the likelihood of converging to a local minimum rather

than the global minimum during the parameter fitting process. For

this reason, less complicated models also have been developed

that can represent the behavior of cardiac cells and tissue in a way

that facilitates analysis of their dynamics and of the role of

different parameters in determining their behavior. This class of

models gives up biophysical detail at the ion channel level in

exchange for greater computational tractability One such model is

the Karma model [23], which is a simplification of the Noble

model. Another such model is the Bueno-Orovio-Cherry-Fenton

(BCF) model [3] (also called the minimal model [5, 9]). This

model uses four variables and three ion currents that represent

summary Na+, K+, and Ca2+ currents and incorporates the minimal

level of complexity necessary to reproduce accurate action

potential shapes and rate-dependent properties. We also

implement both of these models in CUDA.

In total, we implement 5 different models containing from 2 to 67

variables. By considering models that vary over a broad range of

biophysical detail and computational complexity, we are able to

identify and address a number of performance issues that arise in

the CUDA programming of cardiac models.

4. REACTION TERM
The reaction term in cardiac models consists of anywhere from

one to dozens of additional differential equations that provide

simple or detailed descriptions of the electrophysiology of cardiac

cells. Appropriate implementation of the reaction term is vital to

optimizing the performance of cardiac electrophysiology

simulations on GPUs.

Performance is increased significantly by tabulating nonlinear

functions of one variable in lookup tables that are accessed

through the texture memory. This provides two main advantages:

it reduces the latency of global memory access, and the hardware

provides a built-in linear interpolation capability. To remove

singularities that occur in some functions for values that make the

denominator of a fraction zero, we calculate the limit of the

functions at the relevant values using l'Hopital's rule.

We also improve performance in several other ways. Because

division is more computationally expensive than multiplication,

all divisions that do not involve variables are replaced with

equivalent multiplications. Also, some differential equations are

solved using semi-implicit methods that allow the use of larger

integration time steps.

In a number of cases, the reaction term in cardiac models uses

biological switching functions in the form of a Heaviside function,

which is a discontinuous function whose value is zero for negative

arguments and one for positive arguments. Heaviside functions

are usually implemented using an if statement, which is penalized

by the GPU because it leads to thread divergence during parallel

execution. Thread divergence refers to threads taking different

paths of a conditional branch. Such threads must run serially,

which can cause serious performance degradations. In our

simulations, we have used an alternative implementation of the

Heaviside function in which the if statement is replaced by

multiplication with a predicate; see Fig. 4.

Figure 4. Heaviside function implementation by if-statement

(left) and by multiplication with a predicate (right).

A central concern in the implementation of the reaction term is the

number of registers used per thread. The total number of threads

per block and the number of registers per thread should be chosen

to best utilize the available computing resources. The relation

among these quantities, as given by the CUDA Programming

Guide [32], is

)32,(TceilB

R

where R is the total number of registers per multiprocessor (a

device-specific quantity), B is the number of active blocks per

multiprocessor, T is the number of threads per block, and

ceil(T,32) is T rounded up to the closest multiple of 32. Having

multiple active blocks for each multiprocessor ensures that the

multiprocessor will not be idle during thread synchronization or

device memory access. By overlapping execution of blocks that

wait and blocks that can run, the multiprocessor is able to hide the

communication latency better.

In simple cardiac models with only a small number of variables

(two or four), it is possible and in fact is advisable to implement

the solution of the reaction term as a single kernel. In this case,

the number of registers used per thread is usually less than 32, so

that 2 or more active thread blocks of 256 threads can be executed

by the same multiprocessor (with a device equipped with 16KB of

Heaviside(x, th, a, b){

 if (x>th)

 return a;

 else

 return b;

}

c = b-a;

…

Heaviside(x, th, a, c){

 return a + (x>th)*c;

}

registers for each multiprocessor). In more complex cardiac

models having more than four variables, use of a single kernel to

solve the reaction term is not recommended and often is not

possible because the number of registers available per thread is

insufficient. In this case, the solution of the reaction term is

implemented as a sequence of multiple kernel invocations, with

each kernel devoted to solving a group of related variables.

Because a kernel invocation may modify the input of the

following kernel, it is necessary to resolve these dependencies by

buffering the variables that are common input among the kernels.

Every kernel invocation introduces an overhead. To optimize the

performance of our implementation with multiple kernels, we

used the visual profiler provided by the recent CUDA SDK to find

the best trade-off between kernel splitting, resource utilization,

and the kernel invocation overhead.

5. DIFFUSION TERM
Cardiac models also include a diffusion term that spatially couples

the main variable (membrane potential). Solving the diffusion

term essentially consists of calculating the Laplacian operator for

all of the grid points. This operation requires frequent access to

values of neighboring cells. The use of the global memory is not

desirable for this operation, because the specific memory-access

pattern that the threads should follow in order to read from the

neighbor cells is not coalesced [32], which reduces performance

considerably. To solve this problem more efficiently, we consider

two solutions, one using shared memory and the other using

texture memory [28, 37].

In the shared-memory approach, the grid points can be subdivided

easily into smaller overlapping parts (see Fig. 5), which then can

be assigned to the threads' blocks. The values at neighboring

elements are then read using shared memory within a block. This

operation is performed by all the threads of the block, which

control both the yellow and the red elements shown in Fig. 5.

After synchronizing among the threads belonging to the same

block, the threads controlling the red cells read the neighborhood

collected in the shared memory and write in their cell the updated

value of the Laplacian. This solution can be used with both single-

and double-precision implementations, but the drawback is that it

needs to use more threads than the number of matrix elements.

Figure 5. Calculating the diffusion term using shared memory.

An alternative approach that we have considered is to use the

texture memory, which provides a cache that is optimized for 1D,

2D or 3D spatial locality, so that threads that read texture

addresses that are close together will achieve the best

performance. Currently, it is not possible to bind the texture to

double-precision data, so the use of the texture memory for

implementing the diffusion term is restricted only to single-

precision implementations.

6. SIMULATION RESULTS
In this section, we present 2D simulations of the five models of

interest and analyze their performance. Four square grids of

increasing size are used to assess how the performance scales with

the number of nodes. Although the larger grid sizes are

physiologically unrealistic for 2D human cardiac surfaces, the

numbers of nodes they contain are similar to what would be

required for some 3D implementations. Note that because of the

necessity of representing information from neighboring thread

blocks in shared-memory implementations, our 16 x 16 thread

blocks are effectively 14 x 14 for the shared-memory

implementations. Therefore, the grid sizes in the shared-memory

implementations (512, 1024, 1536, and 2048) are slightly

different than those in the texture-memory implementations (520,

1038, 1556, and 2074) in all cases.

6.1 Karma Model (2 Variables)
The Karma model is a simplified model of cardiac

electrophysiology that reproduces some basic features of cardiac

dynamics, including wavelength oscillations, which can be seen in

Fig. 6. To quantify GPU performance, we initiated a spiral wave

[14] using the Karma model in square grids with each side

consisting of 512, 1024, 1536, or 2048 elements (corresponding to

218, 220, 1.125x221, and 222 grid points, respectively), as shown in

Fig. 6. Note that the wavelength of a spiral wave in this model is

smaller than that of the human ventricular models (compare Figs.

9 and 12). We used three different implementations: double

precision, single precision using shared memory to calculate the

diffusion term, and single precision with the texture memory used

for the diffusion term. The double-precision simulation required

just over twice as much time as the corresponding single-precision

simulation. For the single-precision simulations, use of the texture

memory for the diffusion term improved performance. For the

smallest grid size, which was similar in size to the surface area

(epicardium) of a human ventricle, the simulation times were

almost real time for the shared memory implementations, and the

simulation was faster than real-time for single precision using the

texture memory.

Figure 6. Left: Spiral wave using the Karma model in a

512 x 512 tissue (12.8 cm x 12.8 cm; resolution 0.0262 cm).

Right: Simulation time normalized to real time for computing

1 s using different grid sizes.

6.2 BCF Model (4 Variables)
The BCF model is a minimal model of cardiac electrophysiology

that reproduces many properties of cardiac tissue and can be

parameterized [3, 5] in many cases to reproduce the dynamics of

more complex models as well as experimental data. As with the

Karma model, we initiated a spiral wave using the BCF model for

square grids with each side consisting of 512, 1024, 1536, or 2048

elements and used the same three implementations: double

precision, single precision with shared memory, and single

precision with texture memory, as shown in Fig. 7. For the BCF

model, the double precision simulation required almost three

times as much time as the corresponding single-precision

simulation. For the single-precision simulations, use of the texture

memory for the diffusion term improved performance, but not by

as large a factor as for the Karma model. For the smallest grid

size, the simulation times were between a factor of 2 and 5 times

greater than real time for all three implementations.

Figure 7. Left: Spiral wave using the BCF model in a

512 x 512 tissue (12.8 cm x 12.8 cm; resolution 0.025 cm).

Right: Simulation time normalized to real time for computing

1 s using different grid sizes.

6.3 BR Model (8 Variables)
The BR model is an 8-variable model of cardiac

electrophysiology that was the first detailed model of mammalian

ventricular cell electrophysiology. As with the Karma and BCF

models, a spiral wave was initiated using the BR model for square

grids with each side consisting of 512, 1024, 1536, or 2048

elements and the performance of the same three implementations

(double precision, single precision with shared memory, and

single precision with texture memory) was quantified, as shown in

Fig. 8. For the BR model, the double-precision simulation was

about two times slower than the corresponding single-precision

simulation. As with the Karma model, use of the texture memory

for calculation of the diffusion term improved performance

significantly for the single precision case. For the smallest grid

size, the simulation times for the three implementations were

between a factor of 10 and 25 times longer than real time.

Figure 8. Left: Spiral wave using the BR model in a 512 x 512

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right:

Simulation time normalized to real time for computing 1 s

using different grid sizes.

6.4 TP Model (19 Variables)
The TP model is a 19-variable model that describes the

electrophysiology of human ventricular cells. As with the

previous models, a spiral wave was initiated using the TP model

for square grids with each side consisting of 512, 1024, 1536, or

2048 elements and the performance of the same three

implementations was quantified, as shown in Fig. 9. For the TP

model, the double-precision simulation was about two to three

times slower than the corresponding single-precision simulation.

Use of the texture memory for calculation of the diffusion term

resulted in a substantial performance improvement: for the largest

grid size, the texture-memory simulation required only half as

much time as the corresponding shared-memory simulation. At

the smallest grid size, the simulation times for the three

implementations were between a factor of 35 and 70 times longer

than real time.

Figure 9. Left: Spiral wave using the TP model in a 512 x 512

tissue (10.24 cm x 10.24 cm; resolution 0.02 cm). Right:

Simulation time normalized to real time for computing 1 s

using different grid sizes.

For the models discussed so far, no significant differences were

observed between the single- and double-precision simulations.

We know, however, that for some more biophysically detailed

models, including the TP model, single precision is not sufficient

to represent small but important changes in the intracellular K+

and intracellular Na+ concentrations over the course of each action

potential. Thus, in the single-precision simulations of the TP

model, very small changes in concentration were represented as

zeros, which produced non-smooth time traces of these

concentrations within a single action potential. Although the

concentration differences between single and double precision

over one action potential were slight, the difference accumulated

over time and changed not only the value of the concentration but

also the trend of the concentration over time, especially for the K+

concentration, as shown in Fig. 10. The differences in

concentrations affected the time progression of spiral waves

generated using single and double precision. Fig. 11 shows

snapshots of spiral waves obtained after 600 s (10 min) of

simulation time and indicates that the waves are at different points

in their rotation paths.

Figure 10. Time evolution of the intracellular K+ (left) and Na+

(right) concentrations observed at a representative grid point

for the TP model with single and double precision.

As Figs. 10 and 11 show, although single precision is faster, it

may introduce errors. Therefore, it is necessary to determine if the

tradeoff between speed and accuracy is acceptable when making

predictions using these models. For some very specific cases, such

as when simply reproducing activation maps that show how a

wave propagates through the atria or ventricle, single precision

may be acceptable. For most other types of studies, such as those

involving fibrillation, use of double precision probably is

necessary.

Figure 11. Spiral waves generated with the TP model using

single precision (left) and double precision (right) after

10 mins.

6.5 IMW Model (67 Variables)
The IMW model is a 67-variable model that describes the

electrophysiology of human ventricular cells in more detail than

the TP model. As with the previous models, a spiral wave was

initiated for square grids with each side consisting of 512, 1024,

1536, or 2048 elements and the performance of the same three

implementations was quantified, as shown in Fig. 12. For the

IMW model, the double-precision simulation was about twice as

slow as the corresponding single-precision simulation. As with the

Karma, BR, and TP models, use of the texture memory for

calculation of the diffusion term improved performance

significantly. At the smallest grid size, the simulation times for the

three implementations ranged from 680 to 1300 times longer than

real time. As with the TP model, double precision is necessary for

adequate representation of ion concentrations.

Figure 12. Left: Spiral wave using the IMW model in a

512 x 512 tissue (10.24 cm x 10.24 cm; resolution 0.02 cm).

Right: Simulation time normalized to real time for computing

1 s using different grid sizes.

7. PERFORMANCE
Fig. 13 shows the performance for the different grid sizes as a

function of the number of model variables. For the models with 4,

8, and 19 variables, the simulation time scales linearly with the

number of variables. For the IMW model (67 variables), the

departure from linear scaling can be explained by several factors.

First, it is necessary to split the solutions of the ordinary different

equations into 21 kernel calls. As a result, for any variable needed

by more than one kernel, it is necessary to duplicate calculation of

that variable within each such kernel to avoid communication

between kernels. This duplication results in increased overhead

for every integration step computed. In addition, the IMW code

was not optimized as fully as the codes for the other models were

(in terms of lookup tables, division eliminations, etc.).

Figure 13. Simulation time normalized to real time as a

function of the number of model variables.

We expect to obtain better performance for all the models by

using other integration methods for the diffusion term, such as the

alternating direction implicit scheme, which allows the use of

larger integration time steps [8].

We also intend to extend our results to 3D and realistic cardiac

anatomies. We note that we do not expect a significant change in

performance in 3D. The number of grid points in the largest grid

sizes analyzed here (more than 4 million nodes) is similar to the

number of grid points that would be required for some 3D

implementations. In considering potential clinical applications, we

note that there are two categories to consider, simulatiosn of atrial

arrhythmias and simulations of ventricular arrhythmias. Because

of a lack of effective treatment options for some atrial

arrhythmias, we expect that real-time simulations would be more

immediately applicable to atrial arrhythmias. Anatomically, the

atria are significantly smaller and thinner than the ventricles, so

that the number of grid points required to implement realistic

simulations of atrial arrhythmias should be on the order of the

number of grid points in our largest 2D simulations here.

Extending the code to 3D is expected to be relatively

straightforward, with the possible exception of the diffusion term,

which will incorporate information from a greater number of grid

points. However, we note that only one variable (the membrane

potential V) diffuses. In addition, as the number of model

variables increases, the diffusion term occupies a decreasing

fraction of the total computational effort. For this reason, although

more complex models may require more computational resources

overall, they are less affected by the expense of calculating the

diffusion term. Thus, we expect that it will be computationally

feasible to extend our implementations to perform near real-time

simulations in realistic 3D atrial anatomies involving simpler

electrophysiology models with more grid points or more complex

electrophysiology models with fewer grid points.

8. RELATED WORK
Much effort has been devoted to accelerating applications of

computational systems biology [18] and molecular biology [41]

using large clusters of CPUs or application-specific integrated

circuits (ASICs). These solutions are usually very expensive and

may not be readily available to a broad group of users. This paper

focuses on the use of GPUs as solution that can be implemented

easily within a workstation.

Over the last five years, GPU performance has exceeded that of

CPUs. As this trend continues [28], many branches of science

requiring large-scale simulation, such as systems biology [7, 44],

have turned to GPU implementations, and cardiac electrical

dynamics is no exception [6]. Realistic human heart geometries at

currently feasible spatial resolutions require that the tissue

structures are discretized in meshes containing between 224 and

227 grid points [21, 34]. Each cell, in turn, involves a separate

implementation of the mathematical equations describing its

electrophysiology as explained in Section 3; these descriptions

can be as simple as two [23] or as complicated as 67 [22] or 87

[13] ordinary differential equations. Even with a simple cell

model, 0.6 seconds of simulation requires about 2 days using 32

CPUs [34]; for a more complex model, the same simulation time

uses about 10 hours with 6144 CPUs [21].

GPUs have been shown to be superior to CPUs for reaction-

diffusion equations similar to those used to describe cardiac

dynamics in both 2 and 3 dimensions, with typical acceleration

values between 5 and 40 depending on the algorithms used [28,

38] and to study turbulent dynamics generated by spiral wave

dynamics [2, 53]. In addition, GPUs have been used for

intracellular calcium dynamics within a single cell using Monte

Carlo simulations, with a 15,000-fold reduction in time compared

to previous studies [19]. GPUs have also been used to accelerate

heart manipulations to enhance intervention simulations such as

catheter positioning [51], surgical deformation [29], simple

contractions [50, 52], and ECG generation [42, 43].

Although most simulations of cardiac electrical dynamics at the

level described in this paper currently use CPUs, the use of GPUs

is becoming increasingly common. The first simulation of cardiac

arrhythmias using GPUs actually was performed on an Xbox 360

[40] using the BCF model [3] (Fig. 7). The first GPU-based

simulation study of cardiac dynamics in 3D [39] involved the

eight-variable Luo-Rudy I (LRI) model [26] and a realistic rabbit

ventricular structure, with 1 s of simulation taking 72 minutes on a

single GPU, compared to 45 minutes using a cluster of 32 CPUs.

Since then, other studies have compared the speeds between CPUs

and GPUs for different cardiac cell models. The 27-variable

Mahajan et al. model [27] was reported to run 9 to 17 times faster

(depending on tissue size) using 4 GPUs than 4 CPUs [48].

More recently, Rocha et al. [36] reported a gain of up to 20 times

for a single GPU implementation compared to a parallel CPU

implementation running with 4 threads on a quad–core machine,

with parts of the code accelerated by a factor of 180 for the 8-

variable LRI model [26] and the 19-variable TP model [46].

Lionetti et al. [24, 25] showed how different optimizations are

needed for different cell models (two-variable FitzHugh-Nagumo

[12], eight-variable BR [1], 18-variable Puglisi-Bers (PB) [35],

42-variable Grandi et al. [15], and 87-variable Flaim et al. [13]).

In particular, they obtained a speedup of 6.7 for the 87-variable

model.

In the remainder of this section, we relate our findings to prior

efforts using GPUs to accelerate cardiac electrophysiology

simulations. Sato et al. report 1 s of simulation in the 8-variable

LR1 model in an 800x800 domain taking 283 s; in contrast, our

simulations in the 8-variable-BR model (the two models are

mathematically almost equivalent and share more than 90% of the

same equations) take 11.34 s on a 512 x 512 domain and 39.2 s on

a 1024 x 1024 domain (rescaling our times to the 800 x 800

domain results in a comparable speedup of a factor of 11).

Vigmond et al. [48] report that 1 s of simulation time on 5 million

nodes using the 27-variable Mahajan et al. model takes about

16 ksec (~4.5 h), whereas our 19-variable TP implementation in a

2048 x 2048 domain (close to 5 million nodes) takes about

8.2 min. However, a direct comparison is difficult to make as

there is not only a difference of eight ODEs, but their simulations

utilize a computationally more expensive bidomain approximation

(used during simulations of defibrillation, where a Poisson

equation needs to be solved at each time step).

Lionetti et al [24, 25] performed 300 ms of a heart beat simulation

on a domain that consisted of 42,240 grid points to represent a

ventricular section. Their main interest was to optimize the ODE

portion of the reaction-diffusion system, so no spatial integration

was performed and all the cells were decoupled. Therefore, their

integration times did not include the spatial integration. They also

used different optimization techniques for the different cell

models considered. For the two-variable FHN model, 300 ms of

simulation required 5.91 s; for the eight-variable BR model,

22.64 s; for the 18-variable PB model, 49.87 s; and for the 87-

variable Flaim et al. model, 119.29 s. To compare with our

simulations, in which the smallest domain consisted of 512 x 512

grid points (a domain about 6.2 times larger), and for 1 s of

simulation time, we need to multiply their timing results by 20.5.

Therefore, 1 s of simulation of the two-variable Karma model

(with the same complexity as the FHN model) took 0.97 s vs.

121 s, the eight-variable BR model took 11.34 s vs. 464 s, the 19-

variable TP model took 35.4 s vs. the 18-variable PB model

1022 s, and the 67-variable IMW 681 s vs. the 87-variable Flaim

et al. model 2445 s. It is important to recall that the simulations by

Lionetti et al. do not include the spatial integration component,

making our timing results even more impressive in comparison.

Rocha et al. report simulations of the eight-variable LR1 and the

19-variable TP models for 500 ms for different 2D grid sizes (the

largest of which was 640 x 640) using a higher spatial resolution

of 0.01 cm. To compare with their results, we performed 500 ms

simulations using the same domain size and spatial resolution.

They report a simulation time of 11.4 minutes and 2.8 hours for

the LR1 and the TP models, whereas we obtain for the BR and TP

models 23.05 s and 285.56 sec on a C1060 card similar to theirs

and 13.9 s and 105.4 s on a C2070 (Fermi-based) card. It is

important to note that the times reported by Rocha et al. include

outputting data at unspecified intervals; for comparison, our times

include outputting a byte representation of the voltage at all nodes

every 1 ms.

9. CONCLUSIONS
In summary, we have shown that we can achieve near real-time

performance of simulated cardiac dynamics in tissues of realistic

sizes by using GPU architectures. To achieve the maximum gains

in computational efficiency, it is necessary to consider model-

specific aspects of the implementation, including appropriate

division of the model among multiple kernels and careful use of

the available levels of memory. The significant performance gains

should facilitate implementation of novel applications of

simulation, including possible use in diagnosing cardiac disease or

developing patient-specific treatment strategies.

10. ACKNOWLEDGMENTS
We would like to thank Riccardo Piergallini and Paolo

Monteverde for granting us access to the Tesla C2070 with the

Fermi chipset. We also would like to thank the anonymous

reviewers for their valuable comments. The revised version of this

paper is much improved thanks to their feedback. This work was

supported in part by the National Science Foundation through

grants No. CCF-0926190, CCF-1018459, and CDI-1028261; by

the National Institutes of Health through grant No.

R01HL089271-01A2; and by the Air Force Office of Scientific

Research through grant No. FA0550-09-1-0481.

11. REFERENCES
[1] Beeler, G.W. and Reuter, H. 1977. Reconstruction of

the action potential of ventricular myocardial fibres. The Journal

of Physiology. 268, 1 (Jun. 1977), 177-210.

[2] Berg, S. et al. 2011. Synchronization based system

identification of an extended excitable system. Chaos. in press,

(2011).

[3] Bueno-Orovio, A. et al. 2008. Minimal model for

human ventricular action potentials in tissue. Journal of

Theoretical Biology. 253, 3 (Aug. 2008), 544-60.

[4] Cherry, E.M. and Fenton, F.H. 2008. Visualization of

spiral and scroll waves in simulated and experimental cardiac

tissue. New Journal of Physics. 10, 12 (2008), 125016.

[5] Cherry, E.M. et al. 2007. Pulmonary vein reentry--

properties and size matter: insights from a computational analysis.

Heart Rhythm: The Official Journal of the Heart Rhythm Society.

4, 12 (Dec. 2007), 1553-62.

[6] Clayton, R.H. et al. 2011. Models of cardiac tissue

electrophysiology: progress, challenges and open questions.

Progress in Biophysics and Molecular Biology. 104, 1-3 (2011),

22-48.

[7] Dematté, L. and Prandi, D. 2010. GPU computing for

systems biology. Briefings in Bioinformatics. 11, 3 (May. 2010),

323-333.

[8] Fenton, F. and Karma, A. 1998. Vortex dynamics in

three-dimensional continuous myocardium with fiber rotation:

Filament instability and fibrillation. Chaos. 8, (1998), 20-47.

[9] Fenton, F.H. 1999. Theoretical investigation of spiral

and scroll wave instabilities underlying cardiac fibrillation.

Doctoral Thesis. Northeastern University.

[10] Fenton, F.H. and Cherry, E.M. 2008. Models of cardiac

cell. Scholarpedia. 3, 8 (2008), 1868.

[11] Fenton, F.H. et al. 2002. Real-time computer

simulations of excitable media: JAVA as a scientific language and

as a wrapper for C and FORTRAN programs. Bio Systems. 64, 1-3

(Jan. 2002), 73-96.

[12] Fitzhugh, R. 1961. Impulses and physiological states in

theoretical models of nerve membrane. Biophysical Journal. 1, 6

(Jul. 1961), 445-466.

[13] Flaim, S.N. et al. 2006. Contributions of sustained INa

and IKv43 to transmural heterogeneity of early repolarization and

arrhythmogenesis in canine left ventricular myocytes. American

Journal of Physiology. Heart and Circulatory Physiology. 291, 6

(Dec. 2006), H2617-2629.

[14] Frazier, D.W. et al. 1989. Stimulus-induced critical

point. Mechanism for electrical initiation of reentry in normal

canine myocardium. The Journal of Clinical Investigation. 83, 3

(Mar. 1989), 1039-52.

[15] Grandi, E. et al. 2010. A novel computational model of

the human ventricular action potential and Ca transient. Journal of

Molecular and Cellular Cardiology. 48, 1 (2010), 112-121.

[16] Gray, R.A. et al. 1995. Mechanisms of cardiac

fibrillation. Science (New York, N.Y.). 270, 5239 (Nov. 1995),

1222-3; author reply 1224-5.

[17] Gray, R.A. et al. 1998. Spatial and temporal

organization during cardiac fibrillation. Nature. 392, 6671 (Mar.

1998), 75-8.

[18] Hagiescu, A. et al. Submitted. A platform-aware GPU

realization of a systems biology application. The 41st

International Conference on Parallel Processing (Taipei, Taiwan,

Submitted).

[19] Hoang-Trong, T.M. et al. 2011. GPU-enabled stochastic

spatiotemporal model of rat ventricular myocyte calcium

dynamics. Biophysical Journal. 100, (Feb. 2011), 557.

[20] Hodgkin, L. and Huxley, A.F. 1952. A quantitative

description of membrane currents and its application to

conduction and excitation in nerve. Journal of Physiology. 117,

(1952), 500-544.

[21] Hosoi, A. et al. 2010. A multi-scale heart simulation on

massively parallel computers. Proceedings of the 2010

ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis (Washington, DC,

USA, 2010), 1–11.

[22] Iyer, V. et al. 2004. A computational model of the

human left-ventricular epicardial myocyte. Biophysical Journal.

87, 3 (Sep. 2004), 1507-1525.

[23] Karma, A. 1994. Electrical alternans and spiral wave

breakup in cardiac tissue. Chaos. 4, 3 (Sep. 1994), 461-472.

[24] Lionetti, F.V. 2010. GPU Accelerated Cardiac

Electrophysiology. Master’s Thesis. University of California, San

Diego.

[25] Lionetti, F.V. et al. 2010. Source-to-Source

Optimization of CUDA C for GPU Accelerated Cardiac Cell

Modeling. Euro-Par 2010 - Parallel Processing. P. D’Ambra et

al., eds. Springer Berlin Heidelberg. 38-49.

[26] Luo, C.H. and Rudy, Y. 1991. A model of the

ventricular cardiac action potential. Depolarization, repolarization,

and their interaction. Circulation Research. 68, 6 (Jun. 1991),

1501-1526.

[27] Mahajan, A. et al. 2008. A rabbit ventricular action

potential model replicating cardiac dynamics at rapid heart rates.

Biophysical Journal. 94, 2 (Jan. 2008), 392-410.

[28] Molnár Jr., F. et al. Simulation of reaction-diffusion

processes in three dimensions using CUDA. Chemometrics and

Intelligent Laboratory Systems. In Press, Corrected Proof.

[29] Mosegaard, J. et al. 2005. A GPU accelerated spring

mass system for surgical simulation. Medicine Meets Virtual

Reality 13: The Magical Next Becomes the Medical Now. IOS

Press. 342-348.

[30] Nanthakumar, K. et al. 2007. Optical mapping of

Langendorff-perfused human hearts: establishing a model for the

study of ventricular fibrillation in humans. American Journal of

Physiology. Heart and Circulatory Physiology. 293, 1 (Jul. 2007),

H875-880.

[31] Noble, D. 1962. A modification of the Hodgkin--Huxley

equations applicable to Purkinje fibre action and pace-maker

potentials. The Journal of Physiology. 160, (Feb. 1962), 317-352.

[32] NVIDIA CUDA Programming Guide v. 3.0:

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/d

ocs/NVIDIA_CUDA_ProgrammingGuide.pdf.

[33] O’Hara, T. et al. 2011. Simulation of the undiseased

human cardiac ventricular action potential: Model formulation

and experimental validation. PLoS Comput Biol. 7, 5 (May. 2011),

e1002061.

[34] Potse, M. et al. 2006. A comparison of monodomain

and bidomain reaction-diffusion models for action potential

propagation in the human heart. IEEE Transactions on Bio-

Medical Engineering. 53, 12 Pt 1 (Dec. 2006), 2425-2435.

[35] Puglisi, J.L. and Bers, D.M. 2001. LabHEART: an

interactive computer model of rabbit ventricular myocyte ion

channels and Ca transport. American Journal of Physiology. Cell

Physiology. 281, 6 (Dec. 2001), C2049-2060.

[36] Rocha, B.M. et al. 2011. Accelerating cardiac excitation

spread simulations using graphics processing units. Concurrency

and Computation: Practice and Experience. 23, 7 (May. 2011),

708-720.

[37] Sanders, J. and Kandrot, E. 2010. CUDA by Example:

An Introduction to General-Purpose GPU Programming.

Addison-Wesley.

[38] Sanderson, A.R. et al. 2008. A framework for exploring

numerical solutions of advection–reaction–diffusion equations

using a GPU-based approach. Computing and Visualization in

Science. 12, 4 (Mar. 2008), 155-170.

[39] Sato, D. et al. 2009. Acceleration of cardiac tissue

simulation with graphic processing units. Medical & Biological

Engineering & Computing. 47, 9 (Sep. 2009), 1011-1015.

[40] Scarle, S. 2009. Implications of the Turing

completeness of reaction-diffusion models, informed by GPGPU

simulations on an XBox 360: cardiac arrhythmias, re-entry and

the Halting problem. Computational Biology and Chemistry. 33, 4

(Aug. 2009), 253-260.

[41] Shaw, D.E. et al. 2007. Anton, a special-purpose

machine for molecular dynamics simulation. Proceedings of the

34th annual international symposium on computer architecture.

35, 2 (Jun. 2007), 1–12.

[42] Shen, W. et al. 2009. GPU-based parallelization for

computer simulation of electrocardiogram. Computer and

Information Technology, International Conference on (Los

Alamitos, CA, USA, 2009), 280-284.

[43] Shen, W. et al. 2010. Parallelized computation for

computer simulation of electrocardiograms using personal

computers with multi-core CPU and general-purpose GPU.

Computer Methods and Programs in Biomedicine. 100, 1 (Oct.

2010), 87-96.

[44] Szafaryn, L.G. et al. 2009. Experiences accelerating

MATLAB systems biology applications. Proceedings of the

Workshop on Biomedicine in Computing: Systems, Architectures,

and Circuits. (Jun. 2009), 1-4.

[45] Taggart, P. et al. 2000. Inhomogeneous transmural

conduction during early ischaemia in patients with coronary artery

disease. Journal of Molecular and Cellular Cardiology. 32, 4

(Apr. 2000), 621-630.

[46] Ten Tusscher, K.H.W.J. and Panfilov, A.V. 2006.

Alternans and spiral breakup in a human ventricular tissue model.

American Journal of Physiology. Heart and Circulatory

Physiology. 291, 3 (Sep. 2006), H1088-1100.

[47] Trayanova, N.A. 2011. Whole-heart modeling:

applications to cardiac electrophysiology and electromechanics.

Circulation Research. 108, 1 (Jan. 2011), 113-128.

[48] Vigmond, E.J. et al. 2009. Near-real-time simulations of

bioelectric activity in small mammalian hearts using graphical

processing units. Conference Proceedings: Annual International

Conference of the IEEE Engineering in Medicine and Biology

Society. (2009), 3290-3293.

[49] Witkowski, F.X. et al. 1998. Spatiotemporal evolution

of ventricular fibrillation. Nature. 392, 6671 (Mar. 1998), 78-82.

[50] Yu, R. et al. 2009. A framework for GPU-accelerated

virtual cardiac intervention. The International Journal of Virtual

Reality. 8, 1 (2009), 37-41.

[51] Yu, R. et al. 2010. Real-time and realistic simulation for

cardiac intervention with GPU. 3, (Jan. 2010), 68-72.

[52] Yu, R. et al. 2010. GPU accelerated simulation of

cardiac activities. Journal of Computers. 5, 11 (Nov. 2010).

[53] Zudrop, J. 2011. Simulation of weak turbulent Rayleigh-

Bénard convection on a GPU. Master’s Thesis. Max-Planck-

Institute for Dynamics and Self-organization.

