Effects of Wall Heterogeneity in an Anatomically Realistic Model of Canine Ventricles: A Simulation Study

E.M. Cherry1,2, W.-J. Rappel3, S.J. Evans2,4, F.H. Fenton2,4

1Department of Physics, Hofstra University; 2Center for Arrhythmia Research at Hofstra University; 3Department of Physics, UCSD; 4The Heart Institute, Beth Israel Medical Center

Abstract

Background. To date, simulations of cardiac tissue in anatomically realistic structures have assumed homogeneous cell types. However, variations in cell properties throughout the ventricular wall are essential for reproducing ECGs without inverted T-waves. Methods. Using published experimental data, variations in action potential shapes and rate adaptation were developed for an ionic cell model and incorporated for the first time into a computer model of the canine ventricles. Results. Simulated activation and recovery patterns and ECGs using homogeneous cell types, an apex-base gradient in action potential duration (APD), wall cell types, and the combination of the apex-base gradient and wall cell types were generated and compared. For the simulations to closely match experiments, it was imperative that wall heterogeneities in cell types be included. Conclusions. Incorporating transmural heterogeneities in simulated canine ventricles resulted in normal ECGs for V4-V6 leads, while the apex-base gradient was necessary for proper ECGs in V1-V3 leads.

Results

Activation

Following Ref. 4, activation began endocardially along the septum, proceeded towards the apex, and finished towards the base and epicardium. Both ventricles were fully activated within 70 ms.

Repolarization: Homogeneous

The repolarization pattern is identical to the activation pattern. T-waves are small and inverted.

Repolarization: Apex-Base Gradient

The base repolarizes faster than the apex. T-waves are larger but still inverted.

Repolarization: Transmural Heterogeneity

Repolarization starts at the epicardium, then endocardium, and then M cells. T-waves are up for leads V3-V6.

Repolarization: Apex-Base + Transmural

Epicardial cells repolarize first, M cells last, and the base before the apex. T-waves were larger with proper polarity.

ECGs for 1D Cables

ECGs generated using 1D cables with various combinations of cell types:

• Identical cell types (homogeneous cable).
• Endocardial-epicardial gradient, without M cells.
• Endocardial, epicardial, and M cells.

See similar cable ECGs with cell types in Ref. 3.

References

1 Clayton RH, Holden AV. Computational framework for simulating the mechanisms and ECGs of re-entrant ventricular fibrillation. Physiol Meas 2002;23:707-726.

This research was facilitated through an allocation of advanced computing resources by the National Computational Science Alliance, through the support of the National Science Foundation TeraGrid Computing System at the Pittsburgh Supercomputing Center. WJR acknowledges support from the Whitaker Foundation.

Conclusions

Simulated activation and recovery patterns and ECGs using homogeneous cell types; an apex-base gradient in APD; transmural epicardial, endocardial, and M cell types; and the combination of the apex-base gradient and wall cell types were generated and compared.

• In homogeneous ventricular tissue, T-waves were small and inverted.
• Using only the apex-base gradient increased the magnitude of the T-wave but did not change its polarity.
• When epicardial, endocardial, and M cell types through the ventricular wall were included, T-waves of proper polarity were produced.
• The combination of the apex-base gradient and transmural heterogeneity amplified differences in repolarization and resulted in larger T-waves with proper polarity.

Ongoing Work

• Reproduce ECGs accurately in 3D.
• Step 1. Activation sequence from experimental data. Accomplished.
• Step 2. Repolarization sequence from experimental data. In progress.